Linear groups as stabilizers of sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lignins as Emulsion Stabilizers

We report on the use of (kraft and soda) lignins as polymeric amphiphiles for the stabilization of emulsions. Lignins’ phase behavior in oil/water systems is presented and explained in terms of their molecular affinities. Emulsions with various oils (including crude oils) were formulated and their properties were rationalized in terms of lignin surface activity as a function of pH and salinity....

متن کامل

NSE characterization of some linear groups

‎For a finite group $G$‎, ‎let $nse(G)={m_kmid kinpi_e(G)}$‎, ‎where $m_k$ is the number of elements of order $k$ in $G$‎ ‎and $pi_{e}(G)$ is the set of element orders of $G$‎. ‎In this paper‎, ‎we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$‎, ‎where $min {n,n+1}$ and $2^n-1=p$ is a prime number.

متن کامل

G-linear sets and torsion points in definably compact groups

Let G be a definably compact group in an o-minimal expansion of a real closed field. We prove that if dim(G \ X) < dimG for some definable X ⊆ G then X contains a torsion point of G. Along the way we develop a general theory for the so-called G-linear sets, and investigate definable sets which contain abstract subgroups of G.

متن کامل

Stabilizers of Closed Sets in the Urysohn Space

Building on earlier work of Katětov, Uspenskij proved in [9] that the group of isometries of Urysohn’s universal metric space U, endowed with the product topology, is a universal Polish group (i.e it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F o...

متن کامل

Linear algebraic groups as parameterized Picard–Vessiot Galois groups

We show that a linear algebraic group is the Galois group of a parameterized Picard-Vessiot extension of k(x), x′ = 1, for certain differential fields k, if and only if its identity component has no one dimensional quotient as a linear algebraic group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1977

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1977-0427489-3